Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoconductivity of oxidized nanostructured PbTe(In) films

Identifieur interne : 000142 ( Russie/Analysis ); précédent : 000141; suivant : 000143

Photoconductivity of oxidized nanostructured PbTe(In) films

Auteurs : RBID : Pascal:09-0344385

Descripteurs français

English descriptors

Abstract

Photoconductivity of as-grown and oxidized nanocrystalline PbTe(In) films has been studied in the dc and ac modes at temperatures 4.2-300 K. The electric transport in the films is defined by two mechanisms: conductivity through barriers at grain boundaries and transport along inversion channels at the grain surface. Modification of the transport mechanisms induced by oxidation is considered. Relatively weak oxidation results in an increase in the contribution of grain barriers to conductivity followed by an enhancement of the photoconductivity amplitude. Instead, this contribution drops in the case of deep oxidation resulting in a photoresponse reduction. It is shown that the main mechanism of charge transport in deeply oxidized films at low temperatures is hopping along inversion channels at the grain surface. It is demonstrated that the photoconductive response of nanocrystalline materials may be optimized by variation of the oxidation level, measurement frequency and temperature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0344385

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoconductivity of oxidized nanostructured PbTe(In) films</title>
<author>
<name sortKey="Dobrovolsky, A A" uniqKey="Dobrovolsky A">A. A. Dobrovolsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dashevsky, Z M" uniqKey="Dashevsky Z">Z. M. Dashevsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Engineering, Ben-Gurion University</s1>
<s2>84105 Beer Sheva</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>84105 Beer Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kasiyan, V A" uniqKey="Kasiyan V">V. A. Kasiyan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Engineering, Ben-Gurion University</s1>
<s2>84105 Beer Sheva</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>84105 Beer Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ryabova, L I" uniqKey="Ryabova L">L. I. Ryabova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khokhlov, D R" uniqKey="Khokhlov D">D. R. Khokhlov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Faculty of Physics, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0344385</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0344385 INIST</idno>
<idno type="RBID">Pascal:09-0344385</idno>
<idno type="wicri:Area/Main/Corpus">005230</idno>
<idno type="wicri:Area/Main/Repository">004E05</idno>
<idno type="wicri:Area/Russie/Extraction">000142</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doping</term>
<term>Frequency dependence</term>
<term>Grain boundaries</term>
<term>Impurities</term>
<term>Indium additions</term>
<term>Lead tellurides</term>
<term>Nanocrystal</term>
<term>Nanostructures</term>
<term>Photoconductivity</term>
<term>Transport processes</term>
<term>Valence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoconductivité</term>
<term>Joint grain</term>
<term>Valence</term>
<term>Phénomène transport</term>
<term>Dépendance fréquence</term>
<term>Dopage</term>
<term>Impureté</term>
<term>Addition indium</term>
<term>Nanostructure</term>
<term>Tellurure de plomb</term>
<term>Nanocristal</term>
<term>PbTe</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Valence (Drôme)</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photoconductivity of as-grown and oxidized nanocrystalline PbTe(In) films has been studied in the dc and ac modes at temperatures 4.2-300 K. The electric transport in the films is defined by two mechanisms: conductivity through barriers at grain boundaries and transport along inversion channels at the grain surface. Modification of the transport mechanisms induced by oxidation is considered. Relatively weak oxidation results in an increase in the contribution of grain barriers to conductivity followed by an enhancement of the photoconductivity amplitude. Instead, this contribution drops in the case of deep oxidation resulting in a photoresponse reduction. It is shown that the main mechanism of charge transport in deeply oxidized films at low temperatures is hopping along inversion channels at the grain surface. It is demonstrated that the photoconductive response of nanocrystalline materials may be optimized by variation of the oxidation level, measurement frequency and temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoconductivity of oxidized nanostructured PbTe(In) films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DOBROVOLSKY (A. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DASHEVSKY (Z. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KASIYAN (V. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RYABOVA (L. I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KHOKHLOV (D. R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Faculty of Physics, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Engineering, Ben-Gurion University</s1>
<s2>84105 Beer Sheva</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>075010.1-075010.5</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000172406570110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0344385</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Photoconductivity of as-grown and oxidized nanocrystalline PbTe(In) films has been studied in the dc and ac modes at temperatures 4.2-300 K. The electric transport in the films is defined by two mechanisms: conductivity through barriers at grain boundaries and transport along inversion channels at the grain surface. Modification of the transport mechanisms induced by oxidation is considered. Relatively weak oxidation results in an increase in the contribution of grain barriers to conductivity followed by an enhancement of the photoconductivity amplitude. Instead, this contribution drops in the case of deep oxidation resulting in a photoresponse reduction. It is shown that the main mechanism of charge transport in deeply oxidized films at low temperatures is hopping along inversion channels at the grain surface. It is demonstrated that the photoconductive response of nanocrystalline materials may be optimized by variation of the oxidation level, measurement frequency and temperature.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Valence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Valence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dépendance fréquence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Frequency dependence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Impureté</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Impurities</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Tellurure de plomb</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Lead tellurides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>PbTe</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>250</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000142 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000142 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0344385
   |texte=   Photoconductivity of oxidized nanostructured PbTe(In) films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024